Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks.

نویسندگان

  • Gregor Trtnik
  • Franci Kavcic
  • Goran Turk
چکیده

Ultrasonic pulse velocity technique is one of the most popular non-destructive techniques used in the assessment of concrete properties. However, it is very difficult to accurately evaluate the concrete compressive strength with this method since the ultrasonic pulse velocity values are affected by a number of factors, which do not necessarily influence the concrete compressive strength in the same way or to the same extent. This paper deals with the analysis of such factors on the velocity-strength relationship. The relationship between ultrasonic pulse velocity, static and dynamic Young's modulus and shear modulus was also analyzed. The influence of aggregate, initial concrete temperature, type of cement, environmental temperature, and w/c ratio was determined by our own experiments. Based on the experimental results, a numerical model was established within the Matlab programming environment. The multi-layer feed-forward neural network was used for this purpose. The paper demonstrates that artificial neural networks can be successfully used in modelling the velocity-strength relationship. This model enables us to easily and reliably estimate the compressive strength of concrete by using only the ultrasonic pulse velocity value and some mix parameters of concrete.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Lightweight Aggregate Concrete Compressive Strength

Nowadays, the better performance of lightweight structures during earthquake has resulted in using lightweight concrete more than ever. However, determining the compressive strength of concrete used in these structures during their service through a none-destructive test is a popular and useful method.  One of the main methods of non-destructive testing in the assessment of compressive strength...

متن کامل

Compressive Strength Evaluation of Underwater Concrete Structures Integrating the Combination of Rebound Hardness and Ultrasonic Pulse Velocity Methods with Artificial Neural Networks

In this study, two kinds of nondestructive evaluation (NDE) techniques (rebound hardness and ultrasonic pulse velocity methods) are investigated for the effective maintenance of underwater concrete structures. A new methodology to estimate the underwater concrete strengths more effectively, named “artificial neural network (ANN) – based concrete strength estimation with the combination of rebou...

متن کامل

Prediction of Pervious Concrete Permeability and Compressive Strength Using Artificial Neural Networks

Pervious concrete is a concrete mixture prepared from cement, aggregates, water, little or no fines, and in some cases admixtures. The hydrological property of pervious concrete is the primary reason for its reappearance in construction. Much research has been conducted on plain concrete, but little attention has been paid to porous concrete, particularly to the analytical prediction modeling o...

متن کامل

PREDICTION OF COMPRESSIVE STRENGTH AND DURABILITY OF HIGH PERFORMANCE CONCRETE BY ARTIFICIAL NEURAL NETWORKS

Neural networks have recently been widely used to model some of the human activities in many areas of civil engineering applications. In the present paper, artificial neural networks (ANN) for predicting compressive strength of cubes and durability of concrete containing metakaolin with fly ash and silica fume with fly ash are developed at the age of 3, 7, 28, 56 and 90 days. For building these...

متن کامل

Estimation of mechanical and durability properties of self-compacting concrete with fibers using ultrasonic pulse velocity

In this research, the performance of ultrasonic pulse velocity (UPV) in concrete is examined as a nondestructive experiment in order to estimate mechanical (compressive and tensile strength) and durability (water absorption) properties of fiber-reinforced self-compacted concrete For this purpose 11 mixture designs containing 3 types of fibers (steel: 0.1, 0.2, 0.3 and 0.4 percent by volume, Pol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ultrasonics

دوره 49 1  شماره 

صفحات  -

تاریخ انتشار 2009